Finiteness spaces, étale groupoids and their convolution algebras

Joey Beauvais-Feisthauer^{1a}, Richard Blute^{2b}, Ian Dewan^{3c}, Blair Drummond^{4b}, and Pierre-Alain Jacqmin^{5b,d}

^aDepartment of Mathematics, Western University, London, Ontario, Canada

^bDepartment of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario, Canada

^cDepartment of Biology, Carleton University, Ottawa, Ontario, Canada

^dInstitut de Recherche en Mathématique et Physique, Université catholique de Louvain, Louvain-la-Neuve, Belgium

12 January 2020

Abstract

Given a ring R, we extend Ehrhard's linearization process by associating to any prefiniteness space an R-module endowed with a Lefschetz topology. For a semigroup in the category of pre-finiteness spaces, one can endow this R-module with the convolution product to obtain an R-algebra.

As examples of pre-finiteness spaces, we study topological spaces with bounded subsets (i.e., included in a compact) taken to be the finitary subsets. We prove that we obtain a finiteness space from any *hemicompact* space via this construction. As a corollary, any étale Hausdorff groupoid induces a semigroup in pre-finiteness spaces and its associated convolution algebra is complete in the hemicompact case. This is in particular the case for the infinite paths groupoid associated to any countable row-finite directed graph.

Keywords: Finiteness space, internal semigroup, étale groupoid, linearization, Lefschetz topology, completion, row-finite directed graph.

MSC (2010): 18B40, 16S60, 46H99 (primary); 54D45, 05C25 (secondary).

¹Email: jbeauva2@uwo.ca.

²Email: rblute@uottawa.ca.

³Email: ian.dewan@carleton.ca.

⁴Email: bdrum047@uottawa.ca.

⁵Email: pjacqmin@uottawa.ca, pierre-alain.jacqmin@uclouvain.be.

1 Introduction

In [2], the authors use finiteness spaces to construct new examples of convolution algebras. A finiteness space [3], defined in detail below, is a set equipped with two classes of subsets, the finitary and cofinitary subsets. These subsets have the property that the intersection of a finitary subset and a cofinitary subset must be finite. In fact, it is sufficient to identify just the finitary subsets since each class of subsets determine the other by an involutive duality $\mathcal{U} \mapsto \mathcal{U}^{\perp}$. So we will write (X, \mathcal{U}) for a finiteness space with \mathcal{U} the class of finitary subsets. There are various categories with different choices of morphisms between finiteness spaces. But each of them has a monoidal structure. Thus we can consider internal semigroups in any of these categories. For a variety of reasons discussed in [2] (and recalled in Proposition 2.6 in the present paper), we consider here the category FinPf where morphisms are appropriate partial functions between finiteness spaces.

Given a finiteness space and a ring R, the *linearization process* (due to Ehrhard [3]) constructs a topological R-module $R\langle (X, \mathcal{U}) \rangle$. The elements of this module are those functions from the finiteness space to the ring for which the support is finitary, i.e., an element of \mathcal{U} . The topology on $R\langle (X, \mathcal{U}) \rangle$ is a *Lefschetz topology* as introduced in [6], where it is referred to as a linear topology. See also [1]. We extend this linearization process to the category **PreFinPf** of *pre-finiteness spaces*, a slightly more general notion, and show that the usual category of finiteness spaces is a reflective subcategory. We also show that the completion of the linearization of a pre-finiteness space is the linearization of its reflection in finiteness spaces.

Then, given an internal semigroup in PreFinPf, we give $R\langle (X, \mathcal{U}) \rangle$ an algebra structure using the usual convolution product. One can show this product is well-defined using the axioms of pre-finiteness spaces and of their morphisms. In this way, we are able to construct Ribenboim's rings of *generalized power series* [8, 9] as well as rings which had not been previously thought of as arising from convolution, such as the ring of *Puiseux series* (see [2]).

In the present paper, we consider this construction in the context of *étale groupoids*. In the classical theory, one associates to an étale groupoid \mathcal{G} (with some restrictions) the convolution algebra of continuous functions $\mathcal{G}_1 \to \mathbb{C}$ vanishing outside a compact subset of \mathcal{G}_1 . This of course bears more than a small resemblance to the situation in pre-finiteness spaces and it is this similarity we exploit in this paper.

On one hand, the étale groupoid case leads one to consider, for a topological space X, the pre-finiteness structure on X defined by the *bounded* subsets (i.e., the subsets included in a compact subset). This induces a functor

$B: \mathsf{LocFin} \to \mathsf{PreFinPf}$

from the category of T_1 spaces and continuous, locally finite-to-one partial functions with closed domain. Thanks to that functor, one easily proves that each étale groupoid \mathcal{G} with \mathcal{G}_1 Hausdorff induces a semigroup $(\mathcal{G}_1, \mathcal{U}, m)$ in PreFinPf (with *m* the composition morphism, viewing it as a partial function) and thus a convolution *R*-algebra $R\langle (\mathcal{G}_1, \mathcal{U}, m) \rangle$.

On the other hand, in the groupoid approach to C^{*}-algebras [7, 11], the next step is to define a seminorm and then complete a quotient of the convolution algebra in this seminorm.

By analogy with our case, this leads us to consider the completion of the convolution algebra $R\langle (\mathcal{G}_1, \mathcal{U}, m) \rangle$ in the Lefschetz topology and to look when $R\langle (\mathcal{G}_1, \mathcal{U}, m) \rangle$ is already complete. By our completion theorem, the answer to the first question is simply that $R\langle (\mathcal{G}_1, \mathcal{U}^{\perp \perp}, m) \rangle$ is the completion of $R\langle (\mathcal{G}_1, \mathcal{U}, m) \rangle$; and thus $R\langle (\mathcal{G}_1, \mathcal{U}, m) \rangle$ is complete exactly when $(\mathcal{G}_1, \mathcal{U})$ is a finiteness space (if $R \neq 0$). We are thus looking for conditions on a topological space X to ensure that the bounded subsets pre-finiteness structure on X is a finiteness space. A sufficient but not necessary condition is that X is *hemicompact*. In particular, this is the case for σ -locally compact spaces. As a consequence, étale groupoids \mathcal{G} with \mathcal{G}_1 hemicompact and Hausdorff induce a complete R-algebra $R\langle (\mathcal{G}_1, \mathcal{U}, m) \rangle$. This turns out to be a large class of groupoids as the example of shift equivalence on a countable row-finite directed graph as considered in [5] is an example of such an étale groupoid. It is in fact one of the fundamental examples in the groupoid approach to C^{*}-algebras.

The organization of this paper is as follows. In the next section, we recall the basics of (pre-)finiteness spaces. In Section 3, we describe the process of linearization for a prefiniteness space. We also consider the topological structure linearization induces and the convolution algebra given rise by a semigroup in pre-finiteness spaces. Section 4 is devoted to our completion theorem for the linearization of a pre-finiteness space. After briefly reviewing the basics of (étale) groupoids in Section 5, we then tackle the questions of knowing when continuous maps determine pre-finiteness maps between the bounded subsets pre-finiteness structures and when these structures are actually finiteness spaces. Finally, in Section 7, we consider the étale groupoid associated to shift equivalence for a countable row-finite directed graph and show that as a consequence of all that has gone before, this gives rise to a complete R-algebra.

Note: The rings we consider in this paper are associative but not necessarily commutative or unital.

Acknowledgements: The authors would like to thank the National Science and Engineering Research Council for their generous support.

2 Pre-finiteness spaces

In order to recall Ehrhard's notion of *finiteness space* [3], we first recall the crucial *perp* definition:

Definition 2.1. Let X be a set and let \mathcal{U} be a set of subsets of X, i.e., $\mathcal{U} \subseteq \mathcal{P}(X)$. Define \mathcal{U}^{\perp} by:

 $\mathcal{U}^{\perp} = \{ u' \subseteq X \mid \text{the set } u' \cap u \text{ is finite for all } u \in \mathcal{U} \}$

It is immediate to check that one has $\mathcal{U} \subseteq \mathcal{U}^{\perp\perp}$ and $\mathcal{U}^{\perp\perp\perp} = \mathcal{U}^{\perp}$.

Following the ideas of [10], one defines:

Definition 2.2. A *pre-finiteness space* is a pair (X, \mathcal{U}) with X a set and $\mathcal{U} \subseteq \mathcal{P}(X)$ satisfying the following conditions:

- $\varnothing \in \mathcal{U};$
- for each $x \in X$, $\{x\} \in \mathcal{U}$;
- if $u_1 \subseteq u_2 \in \mathcal{U}$, then $u_1 \in \mathcal{U}$;
- if $u_1, u_2 \in \mathcal{U}$, then $u_1 \cup u_2 \in \mathcal{U}$.

A morphism of pre-finiteness spaces $\alpha \colon (X, \mathcal{U}) \to (Y, \mathcal{V})$ is a partial function $\alpha \colon X \to Y$ such that

- (1) for each $u \in \mathcal{U}$, $\alpha(u) \in \mathcal{V}$;
- (2) for each $v' \in \mathcal{V}^{\perp}$, $\alpha^{-1}(v') \in \mathcal{U}^{\perp}$.

In presence of condition (1), condition (2) is equivalent to

(2) for each $y \in Y$, $\alpha^{-1}(y) \in \mathcal{U}^{\perp}$.

Under the classical composition of partial functions, pre-finiteness spaces and their morphisms form a category denoted by PreFinPf.

The category PreFinPf is a symmetric monoidal category with unit $I = (\{*\}, \mathcal{P}(\{*\}))$ and tensor given by

$$(X,\mathcal{U})\otimes(Y,\mathcal{V})=(X\times Y,\{w\subseteq u\times v\,|\,u\in\mathcal{U},\,v\in\mathcal{V}\}).$$

The tensor of two morphisms and the unit, associativity and symmetry isomorphisms are defined in the obvious way.

Definition 2.3. A finiteness space is a pair (X, \mathcal{U}) with X a set and $\mathcal{U} \subseteq \mathcal{P}(X)$ such that $\mathcal{U}^{\perp \perp} = \mathcal{U}$. In particular, (X, \mathcal{U}) is a pre-finiteness space.

A morphism of finiteness spaces $f: (X, U) \to (Y, V)$ is a morphism of pre-finiteness spaces. This forms the category FinPf which is a full subcategory of PreFinPf.

Let us recall the following characterization from [3].

Proposition 2.4. (Ehrhard) Let X be a set and $\mathcal{U} \subseteq \mathcal{P}(X)$ a downward closed set of subsets. For $u \subseteq X$, we have $u \in \mathcal{U}^{\perp\perp}$ if and only if, for any infinite subset v of u, there exists an infinite subset w of v such that $w \in \mathcal{U}$.

The category FinPf is a symmetric monoidal category with unit $I = (\{*\}, \mathcal{P}(\{*\}))$ and tensor given by

$$(X,\mathcal{U})\otimes(Y,\mathcal{V}) = (X \times Y, \{w \subseteq u \times v \mid u \in \mathcal{U}, v \in \mathcal{V}\})$$
$$= (X \times Y, \{u \times v \mid u \in \mathcal{U}, v \in \mathcal{V}\}^{\perp \perp}).$$

The tensor of two morphisms and the unit, associativity and symmetry isomorphisms are defined in the obvious way. With this definition, the inclusion functor $\mathsf{FinPf} \hookrightarrow \mathsf{PreFinPf}$ becomes strict symmetric monoidal, fully faithful and furthermore:

Proposition 2.5. The inclusion functor $I: \mathsf{FinPf} \hookrightarrow \mathsf{PreFinPf}$ has a left adjoint which is also strict symmetric monoidal.

Proof. We define

$$F = (-)^{\perp \perp} \colon \mathsf{PreFinPf} \longrightarrow \mathsf{FinPf}$$
$$(X, \mathcal{U}) \longmapsto (X, \mathcal{U}^{\perp \perp})$$
$$\alpha \longmapsto \alpha.$$

Let us show that if $\alpha: (X, \mathcal{U}) \to (Y, \mathcal{V})$ is a morphism in PreFinPf, then $\alpha: (X, \mathcal{U}^{\perp\perp}) \to (Y, \mathcal{V}^{\perp\perp})$ is a morphism in FinPf. Condition (2') being trivial, it suffices to prove condition (1). Let $u'' \in \mathcal{U}^{\perp\perp}$ and let us prove that $\alpha(u'') \in \mathcal{V}^{\perp\perp}$. So we consider $v' \in \mathcal{V}^{\perp}$ and we suppose by contradiction that $\alpha(u'') \cap v'$ is infinite. Thus there exists $(x_i \in u'')_{i \in \mathbb{N}}$ such that, for each $i \in \mathbb{N}$, $\alpha(x_i) \in v'$ and those $\alpha(x_i)$ are pairwise different. By Proposition 2.4, there exists an infinite subset $J \subseteq \mathbb{N}$ such that $\{x_i \mid i \in J\} \in \mathcal{U}$. But $\{\alpha(x_i) \mid i \in J\} = \alpha(\{x_i \mid i \in J\}) \cap v'$ is infinite, which leads to a contradiction since $\alpha(\{x_i \mid i \in J\}) \in \mathcal{V}$.

To show that F is a strict symmetric monoidal functor, we need to show that for prefiniteness spaces (X, \mathcal{U}) and (Y, \mathcal{V}) ,

$$(X, \mathcal{U}^{\perp \perp}) \otimes (Y, \mathcal{V}^{\perp \perp}) = (X \times Y, \{ w \subseteq u'' \times v'' \mid u'' \in \mathcal{U}^{\perp \perp}, v'' \in \mathcal{V}^{\perp \perp} \})$$

is equal to

$$F((X,\mathcal{U})\otimes(Y,\mathcal{V})) = (X \times Y, \{w \subseteq u \times v \mid u \in \mathcal{U}, v \in \mathcal{V}\}^{\perp \perp}).$$

Since $\{w \subseteq u \times v \mid u \in \mathcal{U}, v \in \mathcal{V}\} \subseteq \{w \subseteq u'' \times v'' \mid u'' \in \mathcal{U}^{\perp\perp}, v'' \in \mathcal{V}^{\perp\perp}\}$ and $(X, \mathcal{U}^{\perp\perp}) \otimes (Y, \mathcal{V}^{\perp\perp})$ is a finiteness space, we already have

$$\{w \subseteq u \times v \mid u \in \mathcal{U}, v \in \mathcal{V}\}^{\perp \perp} \subseteq \{w \subseteq u'' \times v'' \mid u'' \in \mathcal{U}^{\perp \perp}, v'' \in \mathcal{V}^{\perp \perp}\}.$$

For the reverse inclusion, we consider $w \subseteq u'' \times v''$ with $u'' \in \mathcal{U}^{\perp\perp}$ and $v'' \in \mathcal{V}^{\perp\perp}$. If $\{(x_i, y_i) | i \in I\}$ is an infinite subset of w, by Proposition 2.4, there exists an infinite subset $J \subseteq I$ such that $\{x_i | i \in J\} \in \mathcal{U}$. Again by Proposition 2.4, there exists an infinite subset $K \subseteq J$ such that $\{y_i | i \in K\} \in \mathcal{V}$. Therefore $\{(x_i, y_i) | i \in K\} \in \{z \subseteq u \times v | u \in \mathcal{U}, v \in \mathcal{V}\}$, which by Proposition 2.4, means that $w \in \{z \subseteq u \times v | u \in \mathcal{U}, v \in \mathcal{V}\}^{\perp\perp}$. This shows that F: PreFinPf \rightarrow FinPf is a strict symmetric monoidal functor. We have a symmetric monoidal adjunction

$$\mathsf{FinPf} \underbrace{\overset{F=(-)^{\perp\perp}}{\underset{I}{\overset{}{\smile}}}}_{I} \mathsf{PreFinPf}$$

where the unit $\eta: 1_{\mathsf{PreFinPf}} \Rightarrow IF$ and the counit $\varepsilon: FI \Rightarrow 1_{\mathsf{FinPf}}$ are the monoidal natural transformations given respectively by

$$\eta_{(X,\mathcal{U})} = 1_X \colon (X,\mathcal{U}) \to (X,\mathcal{U}^{\perp\perp})$$

and ε is the identity on 1_{FinPf} .

For a monoidal category \mathbb{M} , we denote by $SG(\mathbb{M})$ the category of internal semigroups in \mathbb{M} (i.e., objects M equipped with an associative map $m: M \otimes M \to M$). The above monoidal adjunction gives rise to the adjunction:

$$SG(FinPf) \xrightarrow{(-)^{\perp\perp}} SG(PreFinPf)$$

The category FinPf has the following additional properties [2].

Proposition 2.6. The category FinPf is a symmetric monoidal closed category. It is moreover pointed, complete and cocomplete.

Let us conclude this section with a technical lemma we will need in Section 6.

Lemma 2.7. Let (X, \mathcal{U}) be a pre-finiteness space which admits a countable family $(u_i \in \mathcal{U})_{i \in \mathbb{N}}$ such that for each $u \in \mathcal{U}$, there exists $i \in \mathbb{N}$ with $u \subseteq u_i$. Then (X, \mathcal{U}) is a finiteness space.

Proof. Up to replace u_0, u_1, u_2, \ldots by $u_0, u_0 \cup u_1, u_0 \cup u_1 \cup u_2, \ldots$, we can assume without loss of generality that

 $u_0 \subseteq u_1 \subseteq u_2 \subseteq \cdots$

By contradiction, suppose we have $u'' \in \mathcal{U}^{\perp \perp} \setminus \mathcal{U}$. Since $u'' \notin \mathcal{U}$, for each $i \in \mathbb{N}$, $u'' \notin u_i$. By the axiom of choice, we choose for each $i \in \mathbb{N}$ a $x_i \in u'' \setminus u_i$. If the set $v = \{x_i \mid i \in \mathbb{N}\}$ is finite, there would exist $x \in v$ such that $x \notin \bigcup_{i \in \mathbb{N}} u_i$. But the singleton $\{x\}$ is in \mathcal{U} which contradicts our assumptions. Thus $v \subseteq u''$ is infinite. By Proposition 2.4, there exists an infinite set $u \subseteq v$ with $u \in \mathcal{U}$. By assumption, there exists $i \in \mathbb{N}$ such that $u \subseteq u_i$, contradicting the construction of v.

3 Linearization

The notion of linear topology used in this and the following sections is due to Lefschetz [6]. Let R be a ring (not necessarily commutative or unital). A *linearly Hausdorff R-module* is a left R-module M together with a Hausdorff topology on M which is invariant by translations and admits a neighbourhood basis of 0 consisting of submodules of M. In particular, $+: M^2 \to M, -: M \to M$ and the multiplication $R \times M \to M$ are continuous functions when R is considered with the discrete topology. Linearly Hausdorff R-modules and continuous left R-module morphisms form the category Haus-R-Mod.

Following the ideas of [3], we now define the linearization functor

 $R\langle - \rangle$: PreFinPf \rightarrow Haus-R-Mod.

Given a pre-finiteness space (X, \mathcal{U}) , we define $R\langle (X, \mathcal{U}) \rangle$ as the left *R*-module

$$R\langle (X,\mathcal{U})\rangle = \{f \colon X \to R \mid |f| \in \mathcal{U}\}$$

where |f| is the support of f: $|f| = \text{supp}(f) = \{x \in X \mid f(x) \neq 0\}$. The module operations are defined componentwise. It is straightforward to prove that the result of these operations satisfy the condition on the support using the axioms of Definition 2.2.

For $u' \in \mathcal{U}^{\perp}$, we set $V_{u'}$ to be the submodule

$$V_{u'} = \{ f \in R\langle (X, \mathcal{U}) \rangle \mid f_{|_{u'}} = 0 \}.$$

One then says that $V \subseteq R\langle (X, \mathcal{U}) \rangle$ is open if and only if for any $g \in V$, there exists $u' \in \mathcal{U}^{\perp}$ such that $g + V_{u'} \subseteq V$. This defines a topology on $R\langle (X, \mathcal{U}) \rangle$ for which $g + V_{u'}$ is open for any $g \in R\langle (X, \mathcal{U}) \rangle$ and any $u' \in \mathcal{U}^{\perp}$. This topology is Hausdorff since given $f \neq g \in R\langle (X, \mathcal{U}) \rangle$, the opens $f + V_{\{x\}}$ and $g + V_{\{x\}}$ separate f and g for any x such that $f(x) \neq g(x)$. This topology is clearly invariant by translations and $\{V_{u'} | u' \in \mathcal{U}^{\perp}\}$ is a neighbourhood basis of 0. Therefore $R\langle (X, \mathcal{U}) \rangle$ is a linear Hausdorff R-module.

Given a morphism $\alpha \colon (X, \mathcal{U}) \to (Y, \mathcal{V})$ in PreFinPf, one defines $R\langle \alpha \rangle \colon R\langle (X, \mathcal{U}) \rangle \to R\langle (Y, \mathcal{V}) \rangle$ via

$$R\langle \alpha \rangle(f)(y) = \sum_{x \in \alpha^{-1}(y) \cap |f|} f(x)$$

for any $f \in R\langle (X, \mathcal{U}) \rangle$ and any $y \in Y$. To see it is continuous, it suffices to notice that for $h \in R\langle (Y, \mathcal{V}) \rangle$, $v' \in \mathcal{V}^{\perp}$ and $f \in R\langle \alpha \rangle^{-1}(h + V_{v'})$, we have $f + V_{\alpha^{-1}(v')} \subseteq R\langle \alpha \rangle^{-1}(h + V_{v'})$. This completes the definition of the linearization functor $R\langle - \rangle$: PreFinPf \rightarrow Haus-*R*-Mod.

For a non-commutative ring, the notion of an algebra not being standard, we use the following one here. An *R*-algebra is given by a ring $(A, +, 0, -, \cdot)$ together with actions $R \times A \to A$ and $A \times R \to A$ making A an *R*-bimodule and satisfying the axioms

• r(ab) = (ra)b;

•
$$(ab)r = a(br);$$

• (ar)b = a(rb)

for any $a, b \in A$ and any $r \in R$. A *linearly Hausdorff R-algebra* is an *R*-algebra *A* together with a Hausdorff topology on *A* which is invariant by translations and admits a neighbourhood basis of 0 consisting of sub-bimodules of *A*. Linearly Hausdorff *R*-algebras and continuous *R*-algebra morphisms form the category Haus-*R*-Alg.

We can extend the linearization functor $R\langle - \rangle$: PreFinPf \rightarrow Haus-R-Mod to

$$R\langle - \rangle \colon \mathrm{SG}(\mathsf{PreFinPf}) \to \mathsf{Haus}\text{-}R\text{-}\mathsf{Alg}$$

as follows. Given a semigroup \mathbb{X} in PreFinPf, i.e., a pre-finiteness space (X, \mathcal{U}) equipped with a semigroup law $m: (X, \mathcal{U}) \otimes (X, \mathcal{U}) \to (X, \mathcal{U})$, we define $R\langle \mathbb{X} \rangle$ as $R\langle (X, \mathcal{U}) \rangle$ together with the componentwise bimodule operations and the multiplication $\cdot: R\langle \mathbb{X} \rangle \times R\langle \mathbb{X} \rangle \to R\langle \mathbb{X} \rangle$ given by the convolution product

$$(f \cdot g)(x) = \sum_{\substack{(y,z) \in m^{-1}(x) \\ y \in |f| \\ z \in |g|}} f(y)g(z)$$

for $f, g \in R\langle X \rangle$ and $x \in X$. This is a finite sum since m satisfies condition (2'). Moreover, $|f \cdot g| \subseteq m(|f| \times |g|) \in \mathcal{U}$ since m satisfies condition (1). For a semigroup homomorphism $\alpha \colon X = (X, \mathcal{U}, m) \to Y = (Y, \mathcal{V}, n)$ in PreFinPf, the map $R\langle \alpha \rangle \colon R\langle X \rangle \to R\langle Y \rangle$ is defined as previously. It preserves the multiplication since

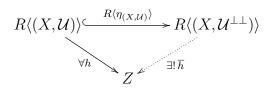
$$\begin{aligned} R\langle \alpha \rangle (f \cdot g)(y) &= \sum_{x \in \alpha^{-1}(y) \cap |f \cdot g|} \sum_{\substack{(x_1, x_2) \in m^{-1}(x) \\ x_1 \in |f| \\ x_2 \in |g|}} f(x_1)g(x_2) \\ &= \sum_{\substack{(x_1, x_2) \in |f| \times |g| \\ \alpha(m(x_1, x_2)) = y}} f(x_1)g(x_2) \\ &= \sum_{\substack{(x_1, x_2) \in |f| \times |g| \\ n(\alpha(x_1), \alpha(x_2)) = y}} f(x_1)g(x_2) \\ &= \sum_{\substack{(y_1, y_2) \in n^{-1}(y) \\ y_1 \in \alpha(|f|) \\ y_2 \in \alpha(|g|)}} \left(\sum_{x_1 \in \alpha^{-1}(y_1) \cap |f|} f(x_1)\right) \cdot \left(\sum_{x_2 \in \alpha^{-1}(y_2) \cap |g|} g(x_2)\right) \\ &= (R\langle \alpha \rangle (f) \cdot R\langle \alpha \rangle (g))(y) \end{aligned}$$

for $f, g \in R\langle X \rangle$ and $y \in Y$.

4 The completion theorem

Let R be a ring. Each linearly Hausdorff R-module M is a uniform space when we say that $W \subseteq M \times M$ is an *entourage* if and only if there exists a neighbourhood V of 0 such that for $x, y \in M$ with $x - y \in V$, we have $(x, y) \in W$. For a primer on the theory of uniform spaces, see [4]. This induces a forgetful functor Haus-R-Mod \rightarrow Unif to the category of uniform spaces and uniformly continuous functions. That way, we can consider Cauchy nets in any linearly Hausdorff R-module and the notion of completeness makes sense.

Theorem 4.1. Let $R \neq 0$ be a ring and (X, \mathcal{U}) a pre-finiteness space. Then $R\langle (X, \mathcal{U}) \rangle$ is complete if and only if (X, \mathcal{U}) is a finiteness space. Moreover, $R\langle (X, \mathcal{U}^{\perp \perp}) \rangle$ is the completion of $R\langle (X, \mathcal{U}) \rangle$, i.e., for any uniformly continuous function $h: R\langle (X, \mathcal{U}) \rangle \to Z$ to a complete uniform Hausdorff space, there exists a unique uniformly continuous function $\overline{h}: R\langle (X, \mathcal{U}^{\perp \perp}) \rangle \to Z$ such that $\overline{h} \circ R\langle \eta_{(X, \mathcal{U})} \rangle = h$.



Proof. The fact that $R\langle (X,\mathcal{U})\rangle$ is complete if (X,\mathcal{U}) is a finiteness space is due to Ehrhard [3]. Since his proof only includes the case of sequences, let us prove it in full generality here. So let D be a directed set and $a: D \to R\langle (X,\mathcal{U})\rangle$ a Cauchy net in $R\langle (X,\mathcal{U})\rangle$. For $x \in X$, we know that $\{x\} \in \mathcal{U}^{\perp}$, so $V_{\{x\}}$ is an open neighbourhood of 0. Thus, there exists $N_x \in D$ such that if $m, n \geq N_x$, then $a_m - a_n \in V_{\{x\}}$, i.e., $a_m(x) = a_n(x)$. We define $f: X \to R$ by $f(x) = a_{N_x}(x)$ for $x \in X$. Notice that this definition is independent of the choice of N_x since D is a directed set. For $u' \in \mathcal{U}^{\perp}$, since a is a Cauchy net and $V_{u'}$ is an open neighbourhood of 0, we know there exists $N_{u'} \in D$ such that $a_{m|_{u'}} = a_{n|_{u'}}$ for any $m, n \geq N_{u'}$. Thus, for any $n \geq N_{u'}$ and any $x \in u'$, consider a $N' \in D$ with $N' \geq N_{u'}$ and $N' \geq N_x$. We have $a_n(x) = a_{N'}(x) = a_{N_x}(x) = f(x)$. This shows that $a_{n|_{u'}} = f_{|_{u'}}$ for any $n \geq N_{u'}$. We deduce that $|f| \in \mathcal{U}^{\perp\perp} = \mathcal{U}$ since $|f| \cap u' = |a_{N_{u'}}| \cap u'$ for any $u' \in \mathcal{U}^{\perp}$. This also proves that the net a converges to f. Hence $R\langle (X,\mathcal{U}) \rangle$ is complete.

Let us now prove the universal property. We first notice that $R\langle \eta_{(X,\mathcal{U})} \rangle \colon R\langle (X,\mathcal{U}) \rangle \hookrightarrow R\langle (X,\mathcal{U}^{\perp\perp}) \rangle$ is the natural inclusion. Let us consider a complete uniform Hausdorff space Z and a uniformly continuous function $h \colon R\langle (X,\mathcal{U}) \rangle \to Z$. We first notice that $D = \mathcal{U}$ is a directed set when ordered by inclusion. Let also $f \in R\langle (X,\mathcal{U}^{\perp\perp}) \rangle$. For $u \in \mathcal{U}$, we set

$$a_u(x) = \begin{cases} f(x) & \text{if } x \in u \\ 0 & \text{otherwise.} \end{cases}$$

Thus $a_u \in R(X, \mathcal{U})$. Let us prove that $a: \mathcal{U} \to R(X, \mathcal{U})$ is a Cauchy net: For each neighbourhood $V_{u'}$ of 0 where $u' \in \mathcal{U}^{\perp}$, we know that $u' \cap |f| \in \mathcal{U}$ since it is finite. Thus, for each $u \in \mathcal{U}$ such that $u \supseteq u' \cap |f|, a_{u|_{u'}} = f_{|_{u'}} = a_{u' \cap |f||_{u'}}$, i.e., $a_u - a_{u' \cap |f|} \in V_{u'}$ and a is indeed a Cauchy net. The same argument also shows that a converges to f in $R((X, \mathcal{U}^{\perp\perp}))$. These facts prove that $(h(a_u))_{u \in \mathcal{U}}$ is a Cauchy net in Z which must converges by completeness of Z. Moreover, we must define h(f) as the limit of $(h(a_u))_{u \in \mathcal{U}}$. This already shows that h is unique since Z is Hausdorff. Moreover, if $f \in R(X, \mathcal{U})$, a converges to f in $R(X, \mathcal{U})$ and thus h(f) = h(f). It remains to prove that h is uniformly continuous. Let W_1 be an entourage of Z and consider W_2 another entourage of Z such that $W_2 \circ W_2 \circ W_2 \subseteq W_1$. Since h is uniformly continuous, $(h \times h)^{-1}(W_2)$ is an entourage of $R\langle (X, \mathcal{U}) \rangle$. So, there exists $u' \in \mathcal{U}$ such that for $f, f' \in R\langle (X, \mathcal{U}) \rangle$ satisfying $f_{|_{u'}} = f'_{|_{u'}}$, we have $(h(f), h(f')) \in W_2$. To prove that $(\overline{h} \times \overline{h})^{-1}(W_1)$ is an entourage of $R\langle (X, \mathcal{U}_{-}^{\perp \perp}) \rangle$, it suffices to show that for any $f, f' \in R\langle (X, \mathcal{U}^{\perp \perp}) \rangle$ satisfying $f_{|_{u'}} = f'_{|_{u'}}$, then $(\overline{h}(f), \overline{h}(f')) \in W_1$. Let us consider such fand f' with a and a' the Cauchy nets defined above which converge to f and f' respectively. Since $(h(a_u))_{u \in \mathcal{U}}$ converges to h(f), there exists $u_1 \in \mathcal{U}$ such that if $u \in \mathcal{U}$ satisfies $u \supseteq u_1$, then $(\overline{h}(f), h(a_u)) \in W_2$. Similarly, there exists $u_2 \in \mathcal{U}$ such that for any $u \in \mathcal{U}$ with $u \supseteq u_2$, we have $(h(a'_u), \overline{h}(f')) \in W_2$. Moreover, for any $u \in \mathcal{U}$ such that $u \supseteq u' \cap (|f| \cup |f'|)$, we have $a_{u|_{u'}} = f_{|_{u'}} = f'_{|_{u'}} = a'_{u|_{u'}}$, which implies that $(h(a_u), h(a'_u)) \in W_2$. Considering any $u \in \mathcal{U}$ such that $u \supseteq u_1 \cup u_2 \cup (u' \cap (|\underline{f}| \cup |\underline{f}'|))$, we have $(\overline{h}(f), h(a_u)) \in W_2$, $(h(a_u), h(a'_u)) \in W_2$ and $(h(a'_u), \overline{h}(f')) \in W_2$. Thus $(\overline{h}(f), \overline{h}(f')) \in W_2 \circ W_2 \circ W_2 \subseteq W_1$, concluding the proof that h is uniformly continuous.

Finally, if $R(X,\mathcal{U})$ is complete, this universal property implies that $R(X,\mathcal{U}) =$

 $R\langle (X, \mathcal{U}^{\perp\perp})\rangle$. Since $R \neq 0$, we can consider $r \neq 0 \in R$. For any $u'' \in \mathcal{U}^{\perp\perp}$, the support of the map $r_{u''}$ defined by

$$r_{u''}(x) = \begin{cases} r & \text{if } x \in u'' \\ 0 & \text{otherwise} \end{cases}$$

is u''. So $r_{u''} \in R\langle (X, \mathcal{U}^{\perp \perp}) \rangle = R\langle (X, \mathcal{U}) \rangle$. This means that $u'' \in \mathcal{U}$ and thus $\mathcal{U}^{\perp \perp} \subseteq \mathcal{U}$, proving that (X, \mathcal{U}) is a finiteness space.

5 Étale groupoids and their convolution algebras

We recommend the reference [11] for the following section. Let us first recall some well-known categorical notions.

Definition 5.1. A groupoid is a (small) category in which every morphism is invertible.

That is, a groupoid \mathcal{G} is a pair of sets \mathcal{G}_1 (arrows) and \mathcal{G}_0 (objects) together with morphisms

- $d, r: \mathcal{G}_1 \rightrightarrows \mathcal{G}_0$ (domain and range)
- $m: \{(\alpha, \beta) \in \mathcal{G}_1 \times \mathcal{G}_1 | r(\alpha) = d(\beta)\} \to \mathcal{G}_1 \text{ (composition, or partial multiplication)}$
- $u: \mathcal{G}_0 \to \mathcal{G}_1$ (unit)
- $i: \mathcal{G}_1 \to \mathcal{G}_1 \text{ (inverse)}$

satisfying the appropriate axioms. This can be summarized in the following diagram:

$$\mathcal{G}_1 \times_{\mathcal{G}_0} \mathcal{G}_1 \xrightarrow{m} \mathcal{G}_1 \xrightarrow{d}_{\overbrace{{\leftarrow u}}{r}} \mathcal{G}_0$$

where $\mathcal{G}_1 \times_{\mathcal{G}_0} \mathcal{G}_1$ is the pullback of d along r.

If this diagram is considered internally to a category C, one then calls it an *internal* groupoid in C. For instance, one has:

- A topological groupoid is an internal groupoid in Top, the category of topological spaces and continuous maps. Thus, a topological groupoid is a groupoid \mathcal{G} where \mathcal{G}_0 and \mathcal{G}_1 are endowed with a topological structure such that d, r, m, u and i are continuous (with the topology on $\mathcal{G}_1 \times_{\mathcal{G}_0} \mathcal{G}_1$ induced by the product topology on $\mathcal{G}_1 \times \mathcal{G}_1$).
- An *étale groupoid* is an internal groupoid in the category of topological spaces and local homeomorphisms. Equivalently, it is a topological groupoid for which the map $ur: \mathcal{G}_1 \to \mathcal{G}_1$ is a local homeomorphism, and consequently so are all the structure maps d, r, m, u and i.

In the reference [11], one finds the following Proposition 3.1.1, where as usual, for a topological space X,

 $\mathcal{C}_c(X) = \{ \text{continuous } f \colon X \to \mathbb{C} \mid \text{supp}(f) \text{ is included in a compact subset of } X \}.$

Proposition 5.2. [11] Let \mathcal{G} be an étale groupoid for which \mathcal{G}_1 is second-countable locally compact and Hausdorff. For $f, g \in \mathcal{C}_c(\mathcal{G}_1)$ and $\gamma \in \mathcal{G}_1$, the set

$$\{(\alpha,\beta)\in\mathcal{G}_1\times_{\mathcal{G}_{\alpha}}\mathcal{G}_1\,|\,m(\alpha,\beta)=\gamma \text{ and } f(\alpha)g(\beta)\neq 0\}$$

is finite. The complex vector space $\mathcal{C}_c(\mathcal{G}_1)$ is a *-algebra with multiplication given by

$$(f \cdot g)(\gamma) = \sum_{\substack{(\alpha,\beta) \mid m(\alpha,\beta) = \gamma \\ f(\alpha)g(\beta) \neq 0}} f(\alpha)g(\beta).$$

The key observation is the finiteness of the above set. This is derived by observing that this set is the intersection of a compact set and a closed, discrete set and so must be finite.

6 Topological spaces as pre-finiteness spaces

The obvious relationship between Proposition 5.2 and the linearization process of Section 3 led the authors to consider, for a topological space X, the pre-finiteness structure of subsets of X included in a compact set. In this section, we are going to investigate this pre-finiteness structure on topological spaces, and in particular in which sense it is functorial. In addition, Theorem 3.2.2 in [11] constructs a C^{*}-algebra from an étale groupoid \mathcal{G} as in Proposition 5.2 using a completion process from $\mathcal{C}_c(\mathcal{G}_1)$. This led the authors to consider the questions of describing the completion of the linearization of this particular pre-finiteness structure on X in the Lefschetz topology and to have conditions on X to ensure its linearization to be complete. While the former question is answered by Theorem 4.1, the latter is treated at the end of this section.

Definition 6.1. Let X be a topological space. A subset $u \subseteq X$ is said to be *bounded* if it is included in a compact subset of X. We denote by \mathcal{B}_X the set of bounded subsets of X.

If X is a Hausdorff space, a subset $u \subseteq X$ is bounded if and only if it is relatively compact, i.e., its closure \overline{u} is compact. As expected, we have the following immediate proposition.

Proposition 6.2. If X is a topological space, then (X, \mathcal{B}_X) forms a pre-finiteness space.

We now investigate how to turn this construction to a functor.

Definition 6.3. Let $f: X \to Y$ be a partial function between two topological spaces and denote by dom(f) its domain endowed with the induced topology from X. We say that fis *continuous* when the (total) function $f: \operatorname{dom}(f) \to Y$ is continuous. We say that f is *locally finite-to-one* when the (total) function $f: \operatorname{dom}(f) \to Y$ is locally finite-to-one, i.e., for each $x \in \operatorname{dom}(f)$, there exists a neighbourhood U of x such that the restriction map $f_{|_U}$ has no infinite fibres. **Proposition 6.4.** Let $f: X \to Y$ be a continuous locally finite-to-one partial function between two topological spaces such that Y is T_1 and dom(f) is closed in X. Then f induces a morphism of pre-finiteness spaces $f: (X, \mathcal{B}_X) \to (Y, \mathcal{B}_Y)$.

Proof. If K is a compact subset of X, $K \cap \text{dom}(f)$ is a compact subset of dom(f) since dom(f) is closed. Therefore, $f(K) = f(K \cap \text{dom}(f))$ is compact in Y since $f: \text{dom}(f) \to Y$ is a (total) continuous function. This already proves condition (1) of the definition of morphisms in PreFinPf for f.

To prove condition (2'), let $y \in Y$, K a compact subset of X and let us prove that $f^{-1}(y) \cap K$ is finite. For each $x \in f^{-1}(y) \cap K$, there exists an open $U_x \subseteq X$ such that $x \in U_x$ and $f_{|_{U_x}}$ is finite-to-one. Moreover, for each $x' \in (K \cap \operatorname{dom}(f)) \setminus f^{-1}(y)$, since $f(x') \neq y$ and Y is T_1 , there exists an open $V_{x'} \subseteq Y$ such that $f(x') \in V_{x'}$ but $y \notin V_{x'}$. Thus, there exists an open $W_{x'} \subseteq X$ such that $x' \in W_{x'}$ and $W_{x'} \cap \operatorname{dom}(f) = f^{-1}(V_{x'})$. That way, we have constructed an open cover of K:

$$K \subseteq \left(\bigcup_{x \in f^{-1}(y) \cap K} U_x\right) \cup \left(\bigcup_{x' \in (K \cap \operatorname{dom}(f)) \setminus f^{-1}(y)} W_{x'}\right) \cup \left(\operatorname{dom}(f)\right)^{\mathcal{C}}$$

Notice that $f^{-1}(y) \cap W_{x'} = \emptyset$ for any $x' \in (K \cap \operatorname{dom}(f)) \setminus f^{-1}(y)$ and $f^{-1}(y) \cap (\operatorname{dom}(f))^{\mathbb{C}} = \emptyset$. Since K is compact, it admits a finite subcover. If $f^{-1}(y) \cap K$ is infinite, this would imply the existence of $x \in f^{-1}(y) \cap K$ such that U_x contains infinitely many elements of $f^{-1}(y) \cap K$. However, this is impossible since $f_{|U_x}$ is finite-to-one.

Example 6.5. Let $U \subseteq \mathbb{C}$ be a connected open subset of the complex plane. By the 'principle of isolated zeroes', any non-constant analytic function $f: U \to \mathbb{C}$ induces a morphism of prefiniteness spaces $(U, \mathcal{B}_U) \to (\mathbb{C}, \mathcal{B}_{\mathbb{C}})$. The same holds if we replace \mathbb{C} by the real line \mathbb{R} .

We have some kind of converse of Proposition 6.4.

Proposition 6.6. Let $f: X \to Y$ be a partial function between topological spaces where X is locally compact. If f induces a morphism of pre-finiteness spaces $f: (X, \mathcal{B}_X) \to (Y, \mathcal{B}_Y)$, then f is locally finite-to-one.

Proof. If f is not locally finite-to-one, then there is some point $x \in \text{dom}(f)$ such that for any neighbourhood $\text{dom}(f) \supseteq U \ni x$, there is some $y \in Y$ such that $U \cap f^{-1}(y)$ is infinite. Since this is true for any neighbourhood U of x in dom(f), applying local compactness of X, we get that there is a compact $K \subseteq X$ such that $K \cap f^{-1}(y)$ is infinite. But this contradicts the condition that $f^{-1}(y) \in \mathcal{B}_X^{\perp}$.

Let LocFin be the category of T_1 spaces and continuous locally finite-to-one partial functions with closed domain. Proposition 6.4 constructs a functor

B: LocFin
$$\longrightarrow$$
 PreFinPf
 $X \longmapsto (X, \mathcal{B}_X)$
 $f \longmapsto f.$

Using the usual product of topological spaces, LocFin is a symmetric monoidal category. By Tychonoff's theorem, if $K \subseteq X$ and $K' \subseteq Y$ are compact, then so is $K \times K' \subseteq X \times Y$. Conversely, if $K \subseteq X \times Y$ is compact, it is included in $\pi_X(K) \times \pi_Y(K)$ where $\pi_X(K) \subseteq X$ and $\pi_Y(K) \subseteq Y$ are compact. This shows that our functor

B: LocFin
$$\rightarrow$$
 PreFinPf

is a strict symmetric monoidal functor.

Corollary 6.7. An étale groupoid \mathcal{G}

$$\mathcal{G}_1 \times_{\mathcal{G}_0} \mathcal{G}_1 \xrightarrow{m} \mathcal{G}_1 \xrightarrow{d} \mathcal{G}_0$$

where \mathcal{G}_1 is Hausdorff induces a semigroup $(\mathcal{G}_1, \mathcal{B}_{\mathcal{G}_1}, m) \in \mathrm{SG}(\mathsf{PreFinPf})$. Thus, it also induces a semigroup $(\mathcal{G}_1, \mathcal{B}_{\mathcal{G}_1}^{\perp\perp}, m) \in \mathrm{SG}(\mathsf{FinPf})$. Given a ring $R \neq 0$, the linearly Hausdorff R-algebra $R\langle (\mathcal{G}_1, \mathcal{B}_{\mathcal{G}_1}, m) \rangle$ has $R\langle (\mathcal{G}_1, \mathcal{B}_{\mathcal{G}_1}^{\perp\perp}, m) \rangle$ as completion and is complete if and only if $(\mathcal{G}_1, \mathcal{B}_{\mathcal{G}_1})$ is a finiteness space.

Proof. It suffices to notice that m is a map $\mathcal{G}_1 \times \mathcal{G}_1 \to \mathcal{G}_1$ in LocFin. The domain $\mathcal{G}_1 \times_{\mathcal{G}_0} \mathcal{G}_1$ of m is closed since \mathcal{G}_1 is Hausdorff. The rest follows from Theorem 4.1.

In view of this corollary, a natural question is to find conditions for a topological space X to induce a finiteness space (X, \mathcal{B}_X) . We will need the following definitions.

Definition 6.8. Let X be a topological space.

- X is hemicompact if there exists an increasing chain of compact subsets $K_1 \subseteq K_2 \subseteq \cdots$ such that any compact subset K is contained in some K_i .
- X is σ -compact if it can be covered by a countable family of compact subsets. Note that every hemicompact space is σ -compact since singletons are compact.
- X is σ -locally compact if it is both σ -compact and locally compact.

Remark 6.9. Let X be a locally compact space. Then X is σ -compact if and only if it is hemicompact.

We now prove that hemicompact spaces (and in particular σ -locally compact spaces) induce finiteness spaces. This result originates from the work of the first, third and fourth authors.

Theorem 6.10. If X is a hemicompact space, then (X, \mathcal{B}_X) is a finiteness space.

Proof. We already know (X, \mathcal{B}_X) forms a pre-finiteness space. The rest follows immediately from Lemma 2.7.

This assumption of being hemicompact is by far not necessary.

Counterexample 6.11. Let X be an uncountable set endowed with the discrete topology. Then X is not hemicompact but (X, \mathcal{B}_X) is a finiteness space.

We note also that being locally compact and Hausdorff is not enough.

Counterexample 6.12. It is well-known that the smallest uncountable ordinal ω_1 , with the order topology, is locally compact and Hausdorff. Let us prove that $(\omega_1, \mathcal{B}_{\omega_1})$ is not a finiteness space. If K is a compact subset of ω_1 , the family $\{[0, k + 1) | k \in K\}$ is an open cover of K. Since it admits a finite subcover, K is countable by definition of ω_1 . This shows that every bounded subset of ω_1 is countable. Conversely, if $A \subseteq \omega_1$ is countable, then it has an upper bound $\alpha < \omega_1$. To see this, we can choose $\alpha = \bigcup A$. It is a countable union of nested countable sets, hence is itself a countable ordinal. It follows that $A \subseteq [0, \alpha]$ and the latter is compact. We thus have

$$\mathcal{B}_{\omega_1} = \{ u \subseteq \omega_1 \, | \, u \text{ is countable} \}.$$

An element of $\mathcal{B}_{\omega_1}^{\perp}$ cannot be infinite, since it would contain an infinite countable subset which is impossible by our description of \mathcal{B}_{ω_1} . Therefore

$$\mathcal{B}_{\omega_1}^{\perp} = \{ u' \subseteq \omega_1 \, | \, u' \text{ is finite} \}.$$

This implies that $\mathcal{B}_{\omega_1}^{\perp\perp} = \mathcal{P}(\omega_1)$ and $\mathcal{B}_{\omega_1} \neq \mathcal{B}_{\omega_1}^{\perp\perp}$ since ω_1 is uncountable.

7 An example

We now discuss an example introduced in [5]. Let G = (V, E, d, r) be a directed graph.

$$E \xrightarrow[r]{d} V$$

We assume that G is row-finite, i.e., that for all $v \in V$, we have $d^{-1}(v)$ is finite. We also assume that G is countable, i.e., E and V are countable sets. We let F(G) be the set of all finite paths in G and P(G) be the set of all infinite paths in G. If $\alpha \in F(G)$ and $\beta \in F(G)$ or P(G) with $r(\alpha) = d(\beta)$, we let $\alpha\beta$ denote the evident path concatenation. We denote the length of α by $|\alpha|$. If $\alpha \in F(G)$, let

$$\mathcal{Z}(\alpha) = \{ x \in P(G) \mid x = \alpha y \text{ for some } y \in P(G) \}.$$

Lemma 7.1 (See [5], Corollary 2.2). Let G be a countable row-finite directed graph. The family of sets

$$\{\mathcal{Z}(\alpha) \mid \alpha \in F(G)\}\$$

forms a basis of compact open sets for a σ -locally compact, totally disconnected, Hausdorff topology on P(G), which coincides with the product topology obtained by viewing P(G) as a subset of $\prod_{i \in \mathbb{N}} E$, where E is given the discrete topology. We can already note that as such, by Theorem 6.10, the space $B(P(G)) = (P(G), \mathcal{B}_{P(G)})$ is a finiteness space.

Definition 7.2. Suppose $x, y \in P(G)$. We say that x and y are shift equivalent with lag $k \in \mathbb{Z}$ if there exists $N \in \mathbb{N}$ such that $N \ge -k$ and $x_i = y_{i+k}$ for all i > N. We write $x \sim_k y$ in this case.

Lemma 7.3. We have $x \sim_0 x$ and $x \sim_k y \Rightarrow y \sim_{-k} x$ and $x \sim_k y, y \sim_l z \Rightarrow x \sim_{k+l} z$ for any $x, y, z \in P(G)$ and $k, l \in \mathbb{Z}$.

One now defines a groupoid \mathcal{G} as follows. Firstly, set $\mathcal{G}_0 = P(G)$ and

$$\mathcal{G}_1 = \{ (x, k, y) \in P(G) \times \mathbb{Z} \times P(G) \mid x \sim_k y \}.$$

The domain and the range maps are given by d(x, k, y) = x and r(x, k, y) = y for any $(x, k, y) \in \mathcal{G}_1$ and the unit map is given, for any $x \in P(G)$, by u(x) = (x, 0, x). The multiplication $m: \mathcal{G}_1 \times_{\mathcal{G}_0} \mathcal{G}_1 \to \mathcal{G}_1$ is defined as

$$m((x, k, y), (y, l, z)) = (x, k + l, z)$$

where

$$\mathcal{G}_1 \times_{\mathcal{G}_0} \mathcal{G}_1 = \{((x,k,y), (y,l,z)) \,|\, (x,k,y), (y,l,z) \in \mathcal{G}_1\}.$$

The inverse map is given by i(x, k, y) = (y, -k, x) for $(x, k, y) \in \mathcal{G}_1$.

One now turns this groupoid into an étale groupoid. For $\alpha, \beta \in F(G)$ such that $r(\alpha) = r(\beta)$, one defines

$$\mathcal{Z}(\alpha,\beta) = \{ (x,k,y) \in \mathcal{G}_1 \mid x \in \mathcal{Z}(\alpha), y \in \mathcal{Z}(\beta), k = |\beta| - |\alpha| \text{ and } x_i = y_{i+k} \ \forall i > |\alpha| \}.$$

Theorem 7.4 (See [5], Proposition 2.6). Let G be a countable row-finite directed graph. The family of sets

$$\{\mathcal{Z}(\alpha,\beta) \mid \alpha,\beta \in F(G) \text{ and } r(\alpha) = r(\beta)\}\$$

forms a basis of compact open sets for a second countable, σ -locally compact, Hausdorff topology on \mathcal{G}_1 . With this topology on \mathcal{G}_1 and the topology on \mathcal{G}_0 described in Lemma 7.1, \mathcal{G} is an étale groupoid.

Corollary 7.5. Let G be a countable row-finite directed graph. Then $(\mathcal{G}_1, \mathcal{B}_{\mathcal{G}_1}, m)$ is a semigroup in FinPf where \mathcal{G}_1 and m are as above.

Proof. This follows immediately from Corollary 6.7 and Theorems 6.10 and 7.4. \Box

References

 R. BLUTE, Hopf algebras and linear logic, Mathematical Structures in Computer Science 6, pp. 189–217, (1996).

- [2] R. BLUTE, J.R.B. COCKETT, P.-A. JACQMIN, P. SCOTT, Finiteness spaces and generalized power series, *Electronic Notes in Theoretical Computer Science* **341**, pp. 5–22, (2018).
- [3] T. EHRHARD, Finiteness spaces, Mathematical Structures in Computer Science 15, pp. 615–646, (2005).
- [4] I.M. JAMES, Introduction to uniform spaces, London Mathematical Society Lecture Note Series 144, (1990).
- [5] A. KUMJIAN, D. PASK, I. RAEBURN, J. RENAULT, Graphs, groupoids and Cuntz-Krieger algebras, *Journal of Functional Analysis* 144, pp. 505–541, (1997).
- [6] S. LEFSCHETZ, Algebraic topology, American Mathematical Society Colloquium Publications 27, (1942).
- [7] J. RENAULT, A groupoid approach to C^* -algebras, Lecture Notes in Mathematics, Springer-Verlag **793**, (1980).
- [8] P. RIBENBOIM, Noetherian rings of generalized power series, Journal of Pure and Applied Algebra 79, pp. 293–312, (1992).
- [9] P. RIBENBOIM, Rings of generalized power series: II: Units and zero-divisors, *Journal of Algebra* 168, pp. 71–89, (1994).
- [10] I.G. ROSENBERG, Algebraic properties of a general convolution, London Mathematical Society Lecture Note Series 131, pp. 175–204, (1988).
- [11] A. SIMS, Hausdorff étale groupoids and their C^* -algebras, arXiv:1710.10897, (2017).